# The Impact of COVID-19 and Its Treatments On Cardiovascular Health



UTAH SOCIETY OF HEALTH-SYSTEM PHARMACISTS

### Austin Lange, PharmD

PGY-1 Pharmacy Resident St. Mark's Hospital austin.lange@mountainstarhealth.com Tuesday, March 22<sup>nd</sup>, 2022 at 3:30pm

#### **Disclosure**

- Relevant Financial Conflicts of Interest:
- Presenter: Austin Lange, PharmD:
  - None
- Mentor: Lisa Arrigo, RPh, BCPS:
  - None



### **Off-Label Uses of Medications**

- Dexamethasone COVID-19
- Baricitinib COVID-19
- Tocilizumab COVID-19
- Sotrovimab COVID-19
- Molnupiravir COVID-19
- Ritonavir-Nirmatrelvir COVID-19
- Casirivimab and Imdevimab COVID-19
- Bamlanivimab and Etesevimab COVID-19

- Azithromycin COVID-19
- Hydroxychloroquine COVID-19
- Chloroquine COVID-19
- Ivermectin COVID-19
- Nitazoxanide COVID-19
- · Colchicine COVID-19
- Anakinra COVID-19
- Canakinumab COVID-19
- Siltuximab COVID-19



### **Learning Objectives**

#### Pharmacists:

- Describe how the pathophysiology of COVID-19 can impact the cardiovascular system
- Differentiate cardiovascular manifestations of COVID-19
- Analyze the cardiovascular impact of medications used for COVID-19



Page 1 of 17

### **Learning Objectives**

#### **Pharmacy Technicians:**

- Distinguish between typical COVID-19 symptoms and those that are potentially cardiovascular related
- · List potential cardiac-related diagnoses that could be secondary to a COVID-19 infection
- Identify medications used to treat COVID-19 that may impact the cardiovascular system

### **Outline**

- · SARS-CoV-2 pathophysiology and how it can impact cardiovascular health
- Cardiovascular complications of COVID-19
  - Myocarditis
  - Heart failure
  - Arrhythmias
  - Acute Coronary syndrome
- · Cardiovascular impact of medications used to treat COVID-19



USHP

## Introduction and **Pathophysiology**

### SARS-CoV-2



- Virus: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
- Disease: Coronavirus Disease 2019 (COVID-19)
- COVID-19 typically manifests as a respiratory illness
  - . Cough, fever, myalgia, shortness of breath, congestion



- Cardiovascular abnormalities are also common
  - \*Myocarditis, heart failure (HF), arrhythmia, myocardial infarction (MI), stroke, deep venous thrombosis (DVT), pulmonary embolism (PE), and more

**USHP** 

### **COVID-19 Incidence and Mortality**

- By the end of 2020, one-third of the U.S. infected
- As of February 2022:
  - Over 400 million cases and 5.8 million deaths worldwide
- Cardiovascular disease (CVD) is prevalent among patients with COVID-19:
  - 7 17% of patients may experience myocardial injury during the infection





### **SARS-CoV-2 Virology**



- · Single-stranded RNA virus
- Binds to angiotensin-converting enzyme 2 (ACE-2) receptor through a spike glycoprotein
- · ACE-2 receptor is expressed on
  - Pulmonary epithelial cells
- · Renal ductal cells
- Cardiomyocytes
- Vascular endothelial cells
- Others





Myocarditis Plaque Instability Acute Coronary Syndrome Macrophage & T-cell Endothelial IL-6 and TNF-α Inflammation Heart Failure / Death Cytokine Storm Viral Hypercoagulability Invasion Pulmonary Vascular Resistance USHP Ang II Ang 1-7√

A. Lange **USHP** Resident CE Series Page 3 of 17

### **Cardiac Symptoms and Abnormalities**

- Symptoms: Palpitations, chest pain, hypertension / hypotension
- · Can lead to new (or exacerbate) heart failure:
  - Lower extremity edema, dyspnea, and fatigue
- · Cardiac laboratory and imaging abnormalities:
  - Elevated troponin and/or b-type natriuretic peptide (BNP)
  - Electrocardiogram (EKG) abnormalities
  - Cardiac image findings



#### **Question for Pharmacists**

Learning Objective: Describe how the pathophysiology of COVID-19 can impact the cardiovascular system



Select all that apply: What cardiovascular manifestations can occur as a result of a COVID-19 infection?

- A. Myocarditis
- B. Heart Failure
- C. Arrhythmia
- D. Myocardial Infarction



en G, et al. (PloS One.); Adeghate EA, et al. (Heart Fail Rev. 2021)

12

**Question for Pharmacy Technicians** 



Learning Objective: Distinguish between typical COVID-19 symptoms and those that are potentially cardiovascular related

Which of the following symptoms of a COVID-19 infection is *most likely* related to cardiovascular abnormalities?

- A. Shortness of breath
- B. Cough
- C. Fever
- D. Bilateral lower extremity edema





COVID-19 and Myocarditis

A. Lange USHP Resident CE Series Page 4 of 17

### **Myocarditis**

- Inflammation of the heart muscle (myocardium)
  - May reduce the heart's ability to pump
  - May cause arrhythmias
- Presentation:
  - Asymptomatic, chest pain, dyspnea, fatigue, arrhythmia
- Left ventricular remodeling and dilated cardiomyopathy → heart failure



**Myocarditis Diagnostics** 

- Endomyocardial biopsy (EMB)
  - Diagnostic gold standard
- EKG
  - Typically abnormal, but neither specific nor sensitive
- Echocardiography (Echo)
  - Useful to exclude does not identify specifics of myocarditis
- Cardiac MRI (CMR)
  - Myocardial edema, hyperemia/capillary leak, and fibrosis/necrosis
- · Laboratory value elevation does not confirm the diagnosis
  - Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and cardiac enzymes (CK-MB, troponin 1, troponin T)





ing X, et al. (Cardiovasc Drugs Ther. 2021); Castiello T, et al. (Heart Fail Rev. 2022); Niazi S, et al. (Curr Probl Cardiol. 2022)

### **Myocarditis in COVID-19**

 Patients with COVID-19 are 16 times more likely to develop myocarditis ❖ 95% CI 14.1 – 17.2)

> **General Population:** 9 per 100,000

COVID-19: **150** per 100,000

 In a prospective cohort study of 100 COVID-19 patients, 60% had on-going myocardial inflammation on cardiac MRI at a mean of 71 days post-infection



- Supportive care
- Treat underlying infection
- Ensure guideline-directed medical therapy (GDMT) for HF treatment
  - \* ACE-I or ARBs, diuretics, aldosterone antagonists, and beta-blockers
- If cardiogenic shock:
  - Inotropes, vasopressors, mechanical circulatory support devices, ECMO



TK. et al. (MMWR Morb Mortal Wklv Rep. 2021): Puntmann VO. et al. (JAMA Cardiol. 2020

USHP

IR. et al. (Neth Heart J. 2014); Addamad ACC, et al. (Medicina 2020); Kamarullah W. et al. (Arch Acad Emero Med. 2021

Page 5 of 17

A. Lange

### **Vaccinations and Myocarditis**

 In a study of over 2.5 million vaccinated people within the Israeli health care system who had received at least one dose of the Pfizer mRNA vaccine:

Incidence of myocarditis:

COVID-19: **150** per 100,000 General Population: **9** per 100,000

Pfizer Vaccination: **2.13** per 100,000 (95% CI 1.56 - 2.70)

 In a study of over 38 million people who were 1-28 days after 2nd vaccination or who were positive for COVID-19,

Incidence Risk Ratio (IRR) of myocarditis:

Pfizer IRR: 1.30 95% CI 0.98 - 1.72 Moderna IRR: 9.84 95% CI 2.69 - 36.03 Infection IRR: 9.76 95% CI 7.51 - 12.69



fevorach D, et al. (N Engl J Med 2021); Patone, M, et al. (Nat Med. 2021).

21

## COVID-19 and Heart Failure

### **Heart Failure Background**

- Functional or structural heart disorder of impaired ventricular filling or ejection
- · Classified based on symptoms and left ventricular ejection fraction (LVEF)
  - HFrEF
    - Reduced ejection fraction (EF <40%)</li>
  - ♦ HFpEF
    - Preserved ejection fraction (EF >50%)
- Symptoms:
  - Dyspnea
  - ❖ Weight gain
  - Edema
  - Fatigue
  - Chest pain
  - Nausea



### Mechanism of COVID-19 in heart failure



lik A, Brito D, Vaqar S, Chhabra L.(StatPearls.. 2021)

Bad

A. Lange USHP Resident CE Series Page 6 of 17

### **Pre-existing Heart Failure**

- Pre-existing heart failure is an independent predictor of in-hospital death for patients with COVID-19 based on a study of nearly 9000 subjects
- (15.3%, vs. 5.6% among those without heart failure (OR 2.48; 95% CI 1.62 3.79)
- Reduced immunity
- Frailty
- Decreased hemodynamic reserve to cope with severe infection



### **New-Onset Heart Failure**

- Etiologies leading to new-onset heart failure in COVID-19:
  - · Myocarditis previously discussed

**Atrial Fibrillation** 

**Myocardial Infarction** 

**Takotsubo ("stress") cardiomyopathy** - reversible cardiac dysfunction characterized by ballooning of the left ventricle in the setting of extreme physical or emotional stress



USHP

ner MR, et al. (N Engl J Med 2020) (Bader F, et al. (Heart Fail Rev. 2021)

ussner W, et al (Am J Emerg Med. 2022).

## Management of heart failure in COVID-19

- GDMT can be continued
  - No evidence to suggest a detrimental effect of ACE-I or ARBs
- Judicious use of fluids to avoid volume overload
- Hemodynamic instability:
  - · Inotropes, vasopressors, temporary mechanical circulatory support, ECMO
- · Manage underlying pulmonary disease



COVID-19 and Arrhythmias

Maher MR, et al. (N Engl J Med 2020); Li J, et al. (JAMA Cardiology. 2020)

27

A. Lange USHP Resident CE Series Page 7 of 17

### **Arrhythmia in COVID-19**

- Inflammatory cytokines → sympathetic overactivation
- IL-6 and TNF-a: cardiac potassium and calcium channels
- Hypoxia: L-type calcium channels and anaerobic metabolism
- Myocarditis: remodeling, ischemia, gap junction, ion-channel
- Post-inflammatory myocardial fibrosis and scarring
- Kidney and GI dysfunction can lead to electrolyte abnormalities
- · Medications (discussed later)







### Monitoring of arrhythmia in COVID-19

- Obtain EKG to assess baseline QTc and/or before any QTc prolonging drugs
- Telemetry monitoring considered with documented cardiac arrhythmias, suspected myocardial ischemia, or other indications
- 99<sup>th</sup> percentile QTc values:
- Males: 470 milliseconds
- Females: 480 milliseconds





## **Arrhythmia incidence in COVID-19**

| Туре                                                  | Reported Incidence |  |
|-------------------------------------------------------|--------------------|--|
| Sinus Tachycardia                                     | 40 - 55%           |  |
| Sinus Bradycardia                                     | 5 - 25%            |  |
| Atrial Fibrillation/Atrial Flutter                    | 2 - 12%            |  |
| Supraventricular Tachycardia (SVT)                    | 0.6 - 6%           |  |
| Pre-ventricular contractions (PVCs)                   | 0 - 28%            |  |
| Non-sustained ventricular tachycardia (NSVT)          | 0 - 15%            |  |
| Sustained Ventricular Tachycardia/Fibrillation or TdP | 0 - 1.4%           |  |
| AV Block                                              | 0 - 1.4%           |  |
| Postural orthostatic tachycardia syndrome (POTS)      | 4 - 22%            |  |
| Inappropriate sinus tachycardia (IST)                 | 3 - 4 %            |  |



### **Atrial fibrillation (AF)**

- In a 2021 meta-analysis of 21,653 patients hospitalized with COVID-19:
- Prevalence of AF: 11%
  - 2.3 3.4% in general population
- \* AF 6-fold higher prevalence in severe vs. non-severe disease (19% vs. 3%)
- Increased risk of all-cause mortality for:
  - AF (OR: 2.98, 95% CI 1.91 4.66)
  - New-onset AF (OR 2.32, 95% CI 1.60 3.37)





A. Lange **USHP** Resident CE Series Page 8 of 17

### **Bradycardia**

2020 multi-center retrospective analysis of over 1000 COVID-19 patients:

|                   | PROFOUND<br>(<50 BPM) | ABSOLUTE<br>(<6o BPM) |
|-------------------|-----------------------|-----------------------|
| Incidence         | 13%                   | 24.9%                 |
| Mortality<br>Rate | 25.5%                 | 18%                   |

- Mortality rate of whole population was 18.7%
- Patients with <60 BPM were 6.59 times more likely to die than those >60 BPM ❖ (95% CI 2.83 - 15.36)

USHP

### Management of arrhythmia in COVID-19

- Medical management during the COVID-19 pandemic is nearly standard
- Rate Control: Beta-blockers could be a concern.
  - \* Alternative: non-dihydropyridine calcium channel blockers
- · Bradyarrhythmia: permissive hyperthermia an option
  - No specific guidance outside of standard treatment used in non-COVID-19 patients
- If patients receiving QTc prolonging medication, consider discontinuing therapy

USHP

ndat, S, Zhu Z, Fuentes-Rojas S, Schurmann P. (Methodist Debakey Cardiovasc J. 2021); Douedi S, et al. (J Arrhythm. 2021

nar S, et al. (Clin Cardiol. 2021)

## COVID-19 and **Acute Coronary Syndrome**

### **Acute Coronary Syndrome**

- Suspicion of ST-elevated Myocardial Infarction (STEMI) or Non-ST-elevated Myocardial Infarction (NSTEMI)
- · Myocardial Infarction:
- \* Cardiac troponins above 99th percentile AND one of:
  - Symptoms
  - EKG changes
  - Pathological Q waves
  - Imaging of new loss of viable myocardium or wall motion abnormality (Echo)



Normal morphology



ST-segment elevation

USHP

en K, et al. (J Am Coll Cardiol)

A. Lange **USHP** Resident CE Series Page 9 of 17

### Type-1 vs. Type-2 Myocardial Infarction

Type-1:

Acute atherothrombotic coronary artery disease typically caused by plaque rupture or erosion

Type-2:

Mismatch in oxygen supply and demand due to hemodynamic or respiratory abnormalities

COVID-19 usually causes TYPE-2





### **Myocardial Infarction in COVID-19**

- Danish study of 5119 patients with COVID-19:
- 17 patients experienced their 1st-ever MI IRR of 5.9 (95% CI 1.9 - 18.2, p=0.002)



- Mount Sanai Health System study of 4695 patients with COVID-19:
- evaluated for acute and chronic myocardial injury
  - · Chronic: 6.8%
  - Acute: 24.9%
  - · All-cause mortality at 6-months: 23.6%
    - 13% of patients w/o MI versus:
    - 43% with chronic myocardial injury (HR 4.17, 95% CI 3.44 5.06; p<0.001)</li>
    - \*  $\,$  47.3% with acute myocardial injury (HR 4.72, 95% CI 4.15 5.36; p<0.001)



gesen K, et al. (J Am Coll Cardiol); https://commons.wikimedia.org/wiki/File:Heart\_attack-NIH.gif

din D, et al.(Circulation. 2020); Kini A, et al. (Eur Heart J Qual Care Clin Outcomes. 2021)

### **Management of MI in COVID-19**

- For every 10 minute delay in percutaneous coronary intervention (PCI) there is an additional 3.31 deaths per 100 patients
  - · PCI preferred over fibrinolysis
- Consideration of risk vs. benefit in life-threatening COVID-19 infection
- Typical pharmacologic treatment:
  - 1. Therapeutic anti-coagulation
  - 2. Aspirin
  - 3. P2Y12 inhibitor
  - Beta blockers
  - 5. Statins
  - 6. ACE-I / ARB





### **Question for Pharmacists**

Learning Objective: Differentiate cardiovascular manifestations of COVID-19

What method is considered the gold-standard for evaluating myocarditis?

- A. Endomyocardial Biopsy (EMB)
- B. Electrocardiogram (EKG)
- C. Echocardiography (Echo)
- D. Cardiac MRI (CMR)



USHP

z KH, et al. (Eur Heart J. 2018); Saad M, Kennedy KF, et al. (JAMA. 2021); https://commons.wikimedia.org/wiki/File:Blausen\_0034\_Angioplasty\_Stent\_01.png

9

Page 10 of 17

A. Lange

### **Question for Pharmacy Technicians**



Learning Objective: List potential cardiac-related diagnoses that could be secondary to a COVID-19 infection



Which of the following can be directly attributed to a COVID-19 infection:

- A. Lung Cancer
- B. Glaucoma
- C. Urinary Tract Infection
- D. Myocarditis



Cardiovascular implications of COVID-19 medications

## Dexamethasone (Decadron®)

MOA

Glucocorticoid that suppresses neutrophil migration and lymphocyte proliferation (anti-inflammatory)

Use

Patient's requiring supplemental oxygen or mechanical ventilation

Dosing

6mg IV or PO for 10 days or until discharge for patients who require respiratory support

Potential CV Impact

• Hypertension • Fluid retention • Sodium ↑/potassium ↓

Remdesivir (Veklury®)

| FDA                    | Fully FDA approved in COVID-19                                                                               |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| MOA                    | Nucleotide analog → prevents viral RNA synthesis by resembling natural ATP substrate                         |  |  |
| Use                    | COVID-19 symptom onset within prior 10 days                                                                  |  |  |
| Dosing                 | 200mg IV infusion on day 1 followed by 100mg IV infusion daily for 4 days or until discharge                 |  |  |
| Potential CV<br>Impact | <ul> <li>QTc prolongation</li> <li>Bradycardia</li> <li>T-wave abnormalities</li> <li>Hypotension</li> </ul> |  |  |

Beigel JH, et al. (N Engl J Med. 2020); https://commons.wikimedia.org/wiki/File:Remdesivir.svg

Page 11 of 17

## Baricitinib (Olumiant®)

FDA Approved via Emergency Use Authorization (EUA) Janus Kinase (JAK) inhibitor that modulates inflammatory responses, exhibiting inhibition of IL-6-induced phosphorylation • High-flow (HFNC) oxygen or non-invasive ventilation • ≥1 elevated inflammatory marker • 4 mg PO daily for 14 days or until discharge • Dose adjustment if eGFR < 60 mL/min/1.73 m<sup>2</sup> USHP **Potential CV**  DVT/PE Impact · No evidence of arrhythmia

Tocilizumab (Actemra®)

| FDA                    | Approved via EUA                                                                             |
|------------------------|----------------------------------------------------------------------------------------------|
| MOA                    | Recombinant monoclonal antibody that binds to IL-6 receptors, inhibiting inflammatory action |
| Use                    | HFNC, or invasive / non-invasive ventilation     CRP ≥ 7.5 mg/dL                             |
| Dosing                 | One-time 8mg/kg IV infusion (up to 100kg max dose 800mg)                                     |
| Potential CV<br>Impact | Hypertension     Thrombocytopenia     Shortens QTc     Infections                            |

alil AC, et al. (N Engl J Med. 2021); Marconi VC, et al. (Lancet Respir Med. 2021); https://commons.wikimedia.org/wiki/File:Baricitinib\_structure.svg

## Sotrovimab (Xevudy®)

| Potential CV<br>Impact | No concerning adverse effects at this time                                                                                                                                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dosing                 | One-time 500mg IV infusion                                                                                                                                                           |
| Use                    | High risk COVID-19 positive patients NOT admitted and NOT requiring oxygen support                                                                                                   |
| MOA                    | Immunoglobulin G-1 monoclonal antibody that binds to the spike protein receptor binding domain, inhibiting an undefined step after virus attachment and prior to fusion of membranes |
| FDA                    | Approved via EUA                                                                                                                                                                     |

Molnupiravir (Lagevrio®)

|   | FDA                    | Approved via EUA                                                                                   |      |
|---|------------------------|----------------------------------------------------------------------------------------------------|------|
|   | MOA                    | Increases frequency of viral RNA mutations by acting as a substrate for RNA polymerase             |      |
|   | Use                    | Mild-to-moderate severity COVID-19 positive non-hospitalized adults within 5 days of symptom onset |      |
|   | Dosing                 | 800mg (four 200mg capsules) PO every 12 hours for 5 days                                           |      |
| F | Potential CV<br>Impact | Nothing of concern     No concerning drug-drug interactions reported                               | USHP |

Page 12 of 17

A. Lange

### Ritonavir-Nirmatrelvir (Paxlovid®)

FDA Approved via EUA Nucleotide analog → prevents viral RNA synthesis by resembling natural ATP substrate Mild-to-moderate severity COVID-19 positive non-hospitalized adults within 5 days of symptom onset · Nirmatrelvir 300mg PO (two 150mg tablets) with ritonavir 100mg PO Dosing All three pills taken together twice daily for 5 days Potential CV Drug interactions · Hyper/Hypotension USHP Impact Edema

Ritonavir-Nirmatrelvir (Paxlovid®)

Ritonavir: Cytochrome P450 (CYP) and P-glycoprotein (P-gp) inhibitor

Many common cardiovascular medications could be impacted including:

#### Consider <u>alternate therapy</u> if patient is taking:

- Amiodarone
- Clopidogrel
- Dofetilide
- Ivabradine
- Rivaroxaban
- Ticagrelor
- Many others

#### Consider withholding these therapies if patient taking:

- Atorvastatin
- Rosuvastatin
- Lovastatin
- Simvastatin
- Tacrolimus
- · Opiate pain medication
- Many others



media/155050/download; https://commons.wikimedia.org/wiki/File:Ritonavir\_structure.svg

d19treatmentquidelines nih gov/theranies/statement-on-paxlovid-drug-drug-interaction

1) Casirivimab and Imdevimab (REGEN-COV®)

2) Bamlanivimab and Etesevimab

entguidelines.nih.gov/therapies/anti-sars-cov-2-antibody-products/anti-sars-cov-2-monoclonal-antibodie

- No longer authorized for use in the United States due to unlikelihood of activity against the predominant omicron variant
- Targets spike protein, which undergoes mutation from variant-to-variant



Azithromycin (Zithromax®)

- · NOT approved for treatment of COVID-19
- · NIH recommends against use

Macrolide antibiotic with immunomodulatory activity, which works to decrease inflammatory cytokines and inhibit neutrophil activation

**Potential CV** Impact

QTc prolongation



Page 13 of 17

A. Lange

### Hydroxychloroquine (Plaquenil®)

FDA

- · NOT approved for treatment of COVID-19
- NIH recommends against use

MOA

Antimalarial that increases endosomal pH, inhibiting fusion of SARS-Cov2 to cell membranes

Potential CV Impact

- QTc prolongation
- Drug interactions (minor CYP2D6 substrate)



### Chloroquine (Aralen®)

FDA

- NOT approved for treatment of COVID-19
- NIH recommends against use

MOA

Antimalarial that increases endosomal pH, inhibiting fusion of SARS-Cov2 to cell membranes. Also, chloroquine inhibits glycosylation of the ACE-2 receptor, possibly interfering with receptor binding



- QTc prolongation
- Drug interactions (minor CYP2D6, 2C8, 3A4 substrate)



nailos G, Karatza E. (Saf Sci. 2020); https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/chloroquine-

COVERY Collaborative Group, et al. (N Engl J Med. 2020); Self WH, et al. (JAMA. 2021)

Kara

## Ivermectin (Stromectol®)

EDA

- NOT approved for treatment of COVID-19
- NIH reports insufficient evidence to recommend either for or against its use

MOA

Antiparasitic drug typically used for onchocerciasis or strongyloidiasis. In COVID-19, thought to inhibit transport proteins and interfere with attachment



- Tachycardia
- Edema
- · Orthostatic hypotension
- Drug interactions (minor CYP3A4 and P-gp substrate)



Nitazoxanide (Alinia®)

FDA

- NOT approved for treatment of COVID-19
- NIH recommends against use

MOA

Antiparasitic drug typically used for cryptosporiduium or giardia infections. In COVID-19, not fully elucidated, but nitazoxanide inhibits host enzymes which can impair protein processing

Potential CV Impact

· No concerns reported



med S, et al. (Int J Infect Dis. 2021); Yu WL, Toh HS, Liao CT, Chang WT. Cardiovasc Drugs Ther. 2021)

\_\_

PRM, et al. (Eur Respir J. 2021); https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/nitazoxanide

Page 14 of 17

A. Lange

## Colchicine (Colcrys®)

- · NOT approved for treatment of COVID-19
- · NIH recommends against use

Anti-inflammatory typically used for gout and pericarditis. In COVID-19, shows potential in decreasing cytokines

**Potential CV Impact** 

• Drug interactions (major CYP3A4 and Pgp substrate)



### Anakinra (Kineret®)

- NOT approved for treatment of COVID-19
- · NIH reports insufficient evidence to recommend either for or against its use

Recombinant Interleukin-1 (IL-1) receptor antagonist that suppresses inflammatory effects



- Infection
- PE



## Canakinumab (Ilaris®)

- · NOT approved for treatment of COVID-19
- NIH recommends against use

Human monoclonal antibody that targets the beta subunit of IL-1, which suppresses inflammatory effects

**Potential CV Impact** 

· No concerns reported



## Siltuximab (Sylvant®)

- NOT approved for treatment of COVID-19
- NIH recommends against use

Chimeric monoclonal antibody that binds to interleukin-6 to inactivate signaling

**Potential CV** Impact

- Edema
- Hypotension



A. Lange

**USHP** Resident CE Series Page 15 of 17

### **Question for Pharmacists**

Learning Objective: Analyze the cardiovascular impact of medications used for COVID-19

Which of the following medications should we be especially concerned with regarding drug-drug interactions that may elicit cardiovascular adverse effects?

- A. Molnupiravir (Lagevrio®)
- B. Baricitinib (Olumiant®)
- C. Ritonavir-Nirmatrelvir (Paxlovid®)
- D. Sotrovimab (Xevudy®)











## **Question for Pharmacy Technicians**



Learning objective: Identify medications used to treat COVID-19 that may impact the cardiovascular system



Which medication is given as an intravenous (IV) infusion rather than by mouth (PO)?

- A. Molnupiravir (Lagevrio®)
- B. Remdesivir (Veklury®)
- C. Baricitinib (Olumiant®)
- D. Ritonavir-Nirmatrelvir (Paxlovid®)



61

### References

- Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi:10.1016/j.ijantimicag.2020.105924
- Fox SE, Heide RSV. COVID-19: The Heart of the Matter-Pathological Changes and a Proposed Mechanism. J Cardiovasc Pharmacol Ther. 2021;26(3):217-224. doi:10.1177/1074248421995356
- 3. Pei S., Yamana T.K., Kandula S. et al. Burden and characteristics of COVID-19 in the United States during 2020. Nature 598, 338–341 (2021). https://doi.org/10.1038/s41586-021-03914-4
- Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html. Accessed February 7, 2022
- Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation 2020;141:1648-55.
- Peng X, Wang Y, Xi X, et al. Promising Therapy for Heart Failure in Patients with Severe COVID-19: Calming the Cytokine Storm. Cardiovasc Drugs Ther. 2021;35(2):231-247. doi:10.1007/s10557-020-07120-8
- Adeghate EA, Eid N, Singh J. Mechanisms of COVID-19-induced heart failure: a short review. Heart Fail Rev. 2021 Mar; 26(2):363-369. doi: 10.1007/s10741-020-10037-x. Epub 2020 Nov 16.
- Laino ME, Ammirabile A, Motta F, et al. Advanced Imaging Supports the Mechanistic Role of Autoimmunity and Plaque Rupture in COVID-19 Heart Involvement [published online ahead of print, 2022 Jan 28]. Clin Rev Allergy Immunol. 2022;1-15. doi:10.1007/s12016-022-08925-1
- Chen G, Li X, Gong Z, et al. Hypertension as a sequela in patients of SARS-CoV-2 infection. PLoS One. 2021;16(4):e0250815. Published 2021 Apr 28. doi:10.1371/journal.pone.0250815
- Castlello T, Georgiopoulos G, Finocchiaro G, et al. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail Rev. 2022;27(1):251-261. doi:10.1007/s10741-021-10087-9
- 1. Niazi S, Niazi F, Doroodgar F, Safi M. The Cardiac Effects of COVID-19: Review of articles. Curr Probl Cardiol. 2022;47(2):100981. doi:10.1016/j.cpcardiol.2021.100981
- 12. Ammirati E, Frigerio M, Adler ED, et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ Heart Fail. 2020;13(11):e007405.

  GOVERNMENT OF THE PROPERTY OF THE P

## References

- 13. Agdamag ACC, Edmiston JB, Charpentier V, et al. Update on COVID-19 Myocarditis. Medicina (Kaunas). 2020;56(12):678. Published 2020 Dec 9. doi:10.3390/medicina56120678
- Boehmer TK, Kompaniyets L, Lavery AM, et al. Association Setween COVID-19 and Myocarditis Using Hospital-Based Administrative Data United States, March 2020–January 2021. MMWR Morb Mortal Wiley Rep 2021;70:1228–1232. DOI: http://dx.doi.org/10.15595/mmw.mm702595external icon.
- Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1285–1273. doi:10.1001/jamacardio.2020.3557
- Hazebroek MR, Everaerts K, Heymans S. Diagnostic approach of myocarditis: strike the golden mean. Neth Heart J. 2014;22(2):80-84. doi:10.1007/s12471-013-0499-3-
- Agdamag ACC, Edmiston JB, Charpentier V, Chowdhury M, Fraser M, Maharaj VR, Francis GS, Alexy T. Update on COVID-19 Myocarditis. Medicina (Kaunas). 2020 Dec 9;56(12):678. doi: 10.3390/medicina56120678. PMID: 33317101; PMICID: PMICID: PMICID: 4165.
- Kamarullah W, Nurcahyani, Mary Josephine C, Bill Multazam R, Ghaezany Nawing A, Dharma S. Corticosteroid Therapy in Management of Myocarditis Associated with COVID-19; a Systematic Review of Current Evidence. Arch Acad Emerg Med. 2021;9(1):e32. Published 2021 Apr 16. doi:10.2003/laaem.v9i1.1153
- 19. Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA vaccine against Covid-19 in Israel. N Engl J Med 2021;385:2140-2149.
- Patone, M., Mei, X.W., Handunnetthi, L. et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med (2021). https://doi.org/10.1038/s41591-021-01630-0
- 21. Malik A, Brito D, Vaqar S, Chhabra L. Congestive Heart Failure. In: StatPearls. Treasure Island (FL): StatPearls Publishing; November 2, 2021.
- Bader F, Manla Y, Atallah B, Starling RC. Heart failure and COVID-19. Heart Fail Rev. 2021 Jan;26(1):1-10. doi: 10.1007/s10741-020-10008-2. PMID: 32720082; PMCID: PMC7383122.
- Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19 [retracted in: N Engl J Med. 2020 Jun 4;]. N Engl J Med. 2020.382(25):e102. doi:10.1056/NEJMos2007621

USHP

63

6/

### References

- 24. Haussner W, DeRosa AP, Haussner D, et al. COVID-19 associated myocarditis: A systematic review. Am J Emerg Med. 2022;51:150-155. doi:10.1016/j.ajem.2021.10.001
- Li J, Wang X, Chen J, Zhang H, Deng A (2020) Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol 5(7):1–6. https://doi.org/10.1001/jamacardio.2020.1624
- Pandat S, Zhu Z, Fuentes-Rojas S, Schurmann P. Arrhythmias in COVID-19. Methodist Debakey Cardiovasc J. 2021;17(5):73-82. Published 2021 Dec 15. doi:10.14797/mdcvj.1039
- Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020 Oct 29;383(18):1757-1766. doi: 10.1056/NEJMcp2009249. Epub 2020 Apr 24. PMID: 32329974.
- Gludicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent Guidance for Navigating and Circumventing the QTc-Prolonging and Torsadogenic Potential of Possible Pharmacotherapies for Coronavirus Disease 19 (COVID-19). Meyo Clin Proc. 2020;95(6):1213-1221. doi:10.1016/j.mayocp.2020.03.024
- Li Z, Shao W, Zhang J, et al. Prevalence of Afrial Fibrillation and Associated Mortality Among Hospitalized Patients With COVID-19: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2021;8:720129. Published 2021 Oct 13. doi:10.3399fform.2021.720129
- 30. Kurnar S, Arcuri C, Chaukhuri S, et al. A novel study on SARS-COV-2 virus associated bradycardia as a predictor of mortality-retrospective multicenter analysis. Clin Cardiol. 2021;44(6):857-eng. acids 4000-10-10-10-10
- Douedi S, Mararenko A, Alshami A, et al. COVID-19 induced bradyarrhythmia and relative bradycardia: An overview. J Arrhythm. 2021;37(4):888-892. Published 2021 Jun 14. doi:10.1002/joa.1:2578
- 32. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231-2264. doi:10.1016/j.jacc.2018.08.1038
- Modin D, Claggett B, Sindet-Pedersen C, et al. Acute COVID-19 and the Incidence of Ischemic Stroke and Acute Myocardial Infarction. Circulation. 2020;142(21):2080-2082. doi:10.1161/CIRCULATIONAHA.120.050809
- Kini A, Cao D, Nardin M, et al. Types of myocardial injury and mid-term outcomes in patients with COVID-19. Eur Heart J Qual Care Clin Outcomes. 2021;7(5):438-446. doi:10.1093/shipozo/gosh/653



### References

- 35. Scholz KH, Maier SKG, Maier LS, et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: results from the German prospective, multicentre FITT-STEMI trial. Eur Heart J. 2018;39(13):1065-1074. doi:10.1093/eurhearti/lehy004
- Saad M, Kennedy KF, Imran H, et al. Association Between COVID-19 Diagnosis and In-Hospital Mortality in Patients Hospitalized With ST-Segment Elevation Myocardial Infarction. JAMA. 2021;326(19):1940-1952. doi:10.1001/jama.2021.18890
- Ahmed MH, Hassan A. Dexamethasons for the Treatment of Coronavirus Disease (COVID-19): a Review [published online ahead of print, 2020 Oct 31]. SN Compr Clin Med. 2020;1-10. doi:10.1007/sid.299-070-01611-0.
- 38. RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693-704. doi:10.1056/NEJMoa2021436
- 39. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 Final Report. N Engl J Med. 2020;383(19):1813-1826. doi:10.1056/NEJMoa2007764
- 40. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N Engl J Med. 2021;384(9):795-807.
- Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of barictinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled Phase 3 trial. Lancet Respir Med. 2021;9(12):1407-1418.
- 42. FDA EUA. https://www.fda.gov/media/150321/download. Accessed February 5, 2022
- Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N Engl J Med. 2021;385(21):1941-1950. doi:10.1056/NEJMoa2107934
- Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N Engl J Med. 2022;386(6):509-520. doi:10.1056/NEJMoa2116044
- 45. FDA EUA, https://www.fda.gov/media/155054/download, Accessed February 5, 2
- FDA EUA. https://www.fda.gov/media/155050/download. Accessed February 5, 2022
- COVID-19 Treatment Guidelines



65

### References

- Oldenburg CE, Pinsky BA, Brogdon J, et al. Effect of Oral Azithromycin vs Placebo on COVID-19 Symptoms in Outpatients With SARS-CoV-2 Infection: A Randomized Clinical Trial. JAMA. 2021;328(6):490-498. doi:10.1001/lama.2021.11517
- RECOVERY Collaborative Group, Horby P, Mafham M, et al. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;383(21):2030-2040. doi:10.1056/NEJMoa2022926
- Self WH, Semler MW, Leither LM, et al. Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19: A Randomized Clinical Trial. JAMA. 2020;324(21):2165–2176. doi:10.1001/jama.2020.22240
- Karalis V, Ismailos G, Karatza E. Chloroquine dosage regimens in patients with COVID-19: Safety risks and optimization using simulations. Saf Sci. 2020;129:104842. doi:10.1016/j.sci.2020.104842
- Ahmed S, Karim MM, Ross AG, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis. 2021;103:214-216. doi:10.1016/j.ijid.2020.11.191
- 53. Yu WL, Toh HS, Liao CT, Chang WT. A Double-Edged Sword-Cardiovascular Concerns of Potential Anti-COVID-19 Drugs. Cardiovasc Drugs Ther. 2021;35(2):205-214. doi:10.1007/s10557-020-07024-7
- 54. Rocco PRM, Silva PL, Cruz FF, et al. Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. Eur Respir J. 2021;58(1):2003725. Published 2021 Jul 8. doi:10.1183/13993003.03725-2020
- Tardif JC, Bouabdallaou N, L'Allier PL, et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir Med. 2021;9(8):924-932. doi:10.1016/S2213-2600(21)00222-8
- CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021;9(3):299-304. doi:10.1016/S2213-2600(20)30556-7



67