Stay in the Loop: Preventing Progression of Chronic Kidney Disease (CKD) in Type 2 Diabetes Mellitus (T2DM)

UTAH SOCIETY OF HEALTH-SYSTEM PHARMACISTS

Guadalupe Chavez, PharmD

PGY1 Pharmacy Practice Resident University of Utah Health guadalupe.chavez@hsc.utah.edu March 22nd, 2022

Disclosure

- Relevant Financial Conflicts of Interest
 - CE Presenter, Dr. Guadalupe Chavez
 - None
 - CE mentor, Dr. Elizabeth Bald
 - None
- Off-Label uses of the following medications will be discussed:
 - Empagliflozin, dulaglutide, liraglutide, and semaglutide (SUBQ)

Learning Objectives for Technicians

- At the end of this presentation, you will be able to:
 - Examine the prevalence of CKD in patients with T2DM
 - Recognize common side effects associated with medications used for the prevention of CKD progression in T2DM
 - Discuss strategies for ensuring patients with T2DM can access and afford medications used for the prevention of CKD progression

Learning Objectives for Pharmacists

- At the end of this presentation, you will be able to:
 - Describe the pathophysiology of CKD associated with T2DM
 - Interpret primary literature surrounding the medications used for the prevention of CKD progression in T2DM
 - Design an effective therapy regimen for a patient with T2DM to prevent progression of CKD

CKD Diagnostic Criteria

Abnormalities of kidney structure \underline{or} function \geq 3 months

Structure: Markers of kidney damage (≥1)

- Urinary Albumin Creatine Ratio (UACR) >30 mg/g (albuminuria)
- Urine sediment abnormalities
- Electrolyte and other abnormalities
- Abnormalities detected by histology
- · Structural abnormalities detected by imaging
- History of kidney transplant

Function: Decreased Estimated Glomerular Filtration Rate (eGFR)

• eGFR <60 ml/min/1.73m²

KDIGO 2012 clinical practice guideline for the evaluation.https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf. Accessed February 6, 2022. American Diabetes Association Professional Practice Committee. 11. chronic kidney disease and risk management: Standards of medical care in diabetes-2022. American Diabetes Association. https://diabetesjournals.org/care/article/45/Supplement_1/S175/138914/11-Chronic-Kidney-Disease-and-Risk-Management. Published December 16, 2021. Accessed February 8, 2022.

Staging CKD

1) CAUSE

i.e., glomerular disease due to diabetes, renal artery stenosis, renal tubular cystinuria, etc.

2) GFR CATEGORIES

3) ALBUMINURIA CATEGORIES

Category	GFR (ml/min/1.73m ²)	Terms	Category	UACR (mg/g)	Terms	
G1	≥ 90	Normal or high	A1	<30	Normal to mildly	
G2	60-89	Mildly decreased			increased Normalalbuminuria	
G3a	45-59	Mildly to moderately decreased	A2	30-300	Moderately increased Microalbuminuria	
G3b	30-44	Moderately to severely decreased				
G4	15-29	Severely decreased	Δ3	>300	Severely increased	
G5	<15	Kidney Failure	7.0	2000	Macroalbuminuria	
		, ,				

KDIGO 2012 clinical practice guideline for the evaluation.https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf. Accessed February 6, 2022.

KDIGO 2012 clinical practice guideline for the evaluation.https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf. Accessed February 6, 2022.

Epidemiology

37 million or ~ 1 in 7 adults have CKD in the US

 DM is the leading cause of CKD and end stage renal disease (ESRD)

34.2 million or ~ 1 in 10 adults have DM (90-95% T2DM)

- ~ 20-40% of patients with DM develop CKD
- Every 24 hours, 170 people with DM begin dialysis

Demographic Risk Factors for CKD associated with T2DM

- Older adults
- Non-Hispanic Black, Hispanics, and Native American

FAQs. Centers for Disease Control and Prevention. https://www.cdc.gov/diabetes/data/statistics/faqs.html. Published August 11, 2021. Accessed February 6, 2022. Diabetes and chronic kidney disease. Centers for Disease Control and Prevention. https://www.cdc.gov/diabetes/managing/diabetes-kidney-disease.html. Published May 7, 2021. Accessed February 6, 2022. Chronic kidney disease in the United States, 2021. Centers for Disease Control and Prevention. https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html. Published March 4, 2021. Accessed February 6, 2022.

Cardiovascular Risk in CKD

Patients with T2DM more likely to experience cardiovascular (CV) events and have worse outcomes

• 50% of diabetes-related deaths are due to CV causes

2-4x

10-20x

Patients with CKD more likely to die of CV causes

• CKD is an independent risk factor for cardiovascular disease (CVD)

Chronic kidney disease and type 2 diabetes. https://professional.diabetes.org/sites/professional.diabetes.org/files/media/ckd_compendium_fin_2_web.pdf. Accessed February 6, 2022.

Pathogenesis of Diabetic Kidney Disease

• Diabetic kidney disease is a microvascular complication of diabetes

Chronic kidney disease and type 2 diabetes. https://professional.diabetes.org/sites/professional.diabetes.org/files/media/ckd_compendium_fin_2_web.pdf. Accessed February 6, 2022.

Terminology CKD vs DKD

- For the remainder of this presentation CKD will be used to define CKD associated with T2DM, sometimes referred to as DKD
- Kidney Disease: Improving Global Outcomes (KDIGO) guidelines:
 - We avoid the term "diabetic kidney disease" to avoid the connotation that CKD is caused by traditional diabetes pathophysiology in all cases, although this term is entirely appropriate when this limitation is recognized

Complications of CKD

It's important to detect CKD as early as possible

- CKD can often be silent in early stages
- Long standing duration of DM, retinopathy, albuminuria, and gradually progressive loss of eGFR is a typical presentation

Symptoms

• Diabetic peripheral neuropathy, peripheral edema, less need for insulin or antidiabetic medications, fatigue, cramps, pruritis, or nausea

Advanced complications

- Elevated blood pressure (BP)
- Volume overload
- Electrolyte abnormalities
- Metabolic acidosis
- Anemia
- Metabolic bone disease

Yee J. Diabetic kidney disease: Chronic kidney disease and diabetes. American Diabetes Association. https://diabetesjournals.org/spectrum/article/21/1/8/2166/Diabetic-Kidney-Disease-Chronic-Kidney-Disease-and. Published January 1, 2008. Accessed February 7, 2022.

CKD Progression Factors

Non-Modifiable

- Older Age/Sex/Race/Ethnicity
- History of CVD
- Duration of DM
- Genetic Factors

Modifiable

- Smoking
- Overweight or Obesity
- Hyperglycemia
- Hypertension
- Dyslipidemia
- Nephrotoxic agents

Executive summary of the 2020 KDIGO diabetes management in chronic kidney disease. https://kdigo.org/wp-content/uploads/2018/03/KDIGO-Diabetes-in-CKD-GL-Exec-Summary.pdf. Accessed February 7, 2022.

KDIGO Recommendations

Practice Point 1.1.1: Patients with DM and CKD should be treated with a comprehensive strategy to reduce risks of kidney disease progression and cardiovascular disease

Pharmacologic Management Strategies

Chronic kidney disease and type 2 diabetes. https://professional.diabetes.org/sites/professional.diabetes.org/files/media/ckd_compendium_fin_2_web.pdf. Accessed February 6, 2022.

Sodium-Glucose Cotransporter 2 inhibitors (SGLT2i)

SGLT2i US Food and Drug Administration (FDA) Approval Dates

Padda IS. Sodium-glucose transport protein 2 (SGLT2) inhibitors. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK576405/. Published January 6, 2022. Accessed February 10, 2022.

Executive summary of the 2020 KDIGO diabetes management in chronic kidney disease. https://kdigo.org/wp-content/uploads/2018/03/KDIGO-Diabetes-in-CKD-GL-Exec-Summary.pdf. Accessed February 7, 2022. American Diabetes Association Professional Practice Committee. 11. chronic kidney disease and risk management: Standards of medical care in diabetes-2022. American Diabetes Association. https://diabetesjournals.org/care/article/45/Supplement_1/S175/138914/11-Chronic-Kidney-Disease-and-Risk-Management. Published December 16, 2021. Accessed February 8, 2022.

Primary Literature

EMPA-REG OUTCOME

Renal outcomes

- Progression to macroalbuminuria
- Doubling of serum creatinine with an eGFR \leq 45 ml/min/1.73m²
- Renal Replacement Therapy (RRT)
- Renal death

Baseline Characteristics

- 99% established CVD
- 17.8% eGFR 45-59 ml/min/1.73m²; 7.7% eGFR 30-44 ml/min/1.73m²
- 28.7% microalbuminuria; 11% macroalbuminuria

Results

- 38% relative risk reduction (RRR) in progression of macroalbuminuria
- 44% RRR in doubling of serum creatinine with an eGFR \leq 45 ml/min/1.73m²
- 55% RRR in renal replacement therapy
- 3 renal related deaths in empagliflozin group and 0 in placebo

Additional Trials

- EMPA-KIDNEY Study (expected completion December 2022)
- Empagliflozin vs Placebo, composite primary renal outcome, in non-diabetes related moderate-severe CKD

Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. Jul 28 2016;375(4):323-34. doi:10.1056/NEJMoa1515920 Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. Nov 26 2015;373(22):2117-28. doi:10.1056/NEJMoa1504720.

ORIGINAL ARTICLE

Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes

Christoph Wanner, M.D., Silvio E. Inzucchi, M.D., John M. Lachin, Sc.D., David Fitchett, M.D., Maximilian von Eynatten, M.D., Michaela Mattheus, Dipl. Biomath., Odd Erik Johansen, M.D., Ph.D., Hans J. Woerle, M.D., Uli C. Broedl, M.D., and Bernard Zinman, M.D., for the EMPA-REG OUTCOME Investigators*

Empagliflozin FDA Indications

Current FDA approved indications

- Adjunct to diet and exercise to improve glycemic control in adults with T2DM
- \downarrow the risk of CV death in adults with T2DM and established CVD
- the risk of CV death plus hospitalization for heart failure (HHF) in adults with heart failure reduced ejection fraction (HFrEF)

Currently **NOT** FDA approved for prevention of CKD progression

Empagliflozin {package insert] ep. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals; 2014.

CREDENCE Trial

Primary renal composite outcome

- End stage renal disease (ESRD)
- Doubling of creatinine level
- Renal death
- CV death

Baseline characteristics

- ~ 50% established CVD
- ~ 59% of participants had eGFR <60 ml/min/1.73 m²
- ~100% of participants had UACR >300 mg/g

Results

- NNT=22 for primary renal composite outcome
- Primary renal outcome drivers
 - 40% \downarrow in doubling of Scr
 - 32% \downarrow in development of ESRD

Additional Trials

- CANVAS-Cardiovascular Outcome Trial (CVOT)
- CANVAS-R

Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. Jun 13 2019;380(24):2295-2306. doi:10.1056/NEJMoa1811744.

The NEW ENGLAND JOURNAL of MEDICINE

IUNE 13, 2019

ESTABLISHED IN 1812

VOL. 380 NO. 24

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

V. Perkovic, M.J. Jardine, B. Neal, S. Bompoint, H.J.L. Heerspink, D.M. Charytan, R. Edwards, R. Agarwal, G. Bakris, S. Bull, C.P. Cannon, G. Capuano, P.-L. Chu, D. de Zeeuw, T. Greene, A. Levin, C. Pollock, D.C. Wheeler, Y. Yavin, H. Zhang, B. Zinman, G. Meininger, B.M. Brenner, and K.W. Mahaffey, for the CREDENCE Trial Investigators*

> 30% ↓ relative risk reduction in the primary renal composite outcome

Canagliflozin FDA Indications

Current FDA approved indications

- As an adjunct to diet and exercise to improve glycemic control in adults with T2DM
- the risk of major adverse CV events in adults with T2DM and established CVD
- the risk of <u>ESRD</u>, doubling of serum creatinine, CV death, and hospitalization for heart failure (HHF) in adults with T2DM and diabetic nephropathy with albuminuria

ORIGINAL ARTICLE

Dapagliflozin in Patients with Chronic Kidney Disease

Ricardo Correa-Rotter, M.D., Glenn M. Chertow, M.D., Tom Greene, Ph.D., Fan-Fan Hou, M.D., Johannes F.E. Mann, M.D., John J.V. McMurray, M.D., Magnus Lindberg, M.Sc., Peter Rossing, M.D., C. David Sjöström, M.D., Roberto D. Toto, M.D., Anna-Maria Langkilde, M.D., and David C. Wheeler, M.D., for the DAPA-CKD Trial Committees and Investigators*

39%

↓ relative risk reduction in primary renal composite outcome with or w/o T2DM

USHP

Hiddo J.L. Heerspink, Ph.D., Bergur V. Stefánsson, M.D.,

DAPA-CKD Trial

Primary renal compositive outcome

- ESRD
- Sustained decline in eGFR by 50% or more
- Renal death
- CV death

Baseline characteristics

- ~ 37% established CVD
- ~ 90% eGFR <60 ml/min/1.73m²
- ~ 50% of participants had UACR>1000 mg/g

Results

- NNT=19 for primary renal composite outcome
- 44% relative risk reduction in renal-specific composite

Additional Trials

DECLARE-TIMI Trial-CVOT

Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. Oct 8 2020;383(15):1436-1446. doi:10.1056/NEJMoa2024816

Dapagliflozin FDA Indications

Current FDA approved indications

- Adjunct to diet and exercise to improve glycemic control in adults with T2DM
- the risk of HHF in adults with T2DM and either established CVD or multiple CV risk factors
- ↓ the risk of CV death and HHF in adults with HFrEF (NYHA class II-IV)
- the risk of sustained eGFR decline, ESRD, CV death, and HHF in adults with CKD at risk of progression

VERTIS CV Trial

Exploratory renal composite endpoint

- Sustained eGFR 40% reduction
- Renal replacement therapy (RRT)
- Renal death

Baseline characteristics

- ~100% established ASCVD
- ~ 22% eGFR <60 ml/min/1.73m²
- ~ 31% UACR 30-299 mg/g; ~ 9.4% UACR ≥ 300 mg/g

Results

• 34% RRR exploratory renal composite endpoint

Diabetologia (2021) 64:1256–1267 https://doi.org/10.1007/s00125-021-05407-5

ARTICLE

Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial

David Z. I. Cherney¹ · Bernard Charbonnel² · Francesco Cosentino³ · Samuel Dagogo-Jack⁴ · Darren K. McGuire^{5,6} · Richard Pratley⁷ · Weichung J. Shih^{8,9} · Robert Frederich¹⁰ · Mario Maldonado¹¹ · Annpey Pong¹² · Christopher P. Cannon¹³ · on behalf of the VERTIS CV Investigators

Received: 25 August 2020 / Accepted: 11 December 2020 / Published online: 4 March 2021 The Author(s) 2021

Cherney DZI, Charbonnel B, Cosentino F, et al. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. *Diabetologia. Jun 2021;64(6):1256-1267. doi:10.1007/s00125-021-05407-5*

Ertugliflozin FDA Indication

Current FDA approved indications

 Adjunct to diet and exercise to improve glycemic control in adults with T2DM

Currently **NOT** FDA approved for prevention of CKD progression

Ertugliflozin [package insert] ep. Whitehouse Station, NJ: Merck & Co., INC.,; 2014.

Meta-analysis

Composite Kidney Outcome

- ESRD
- Doubling serum creatine
- Kidney related mortality

Primary Analysis

- Composite kidney outcome regardless of T2DM, HF, or CKD
- 38% risk reduction

Sub-analysis

- Composite kidney outcome w/CKD (eGFR <60 ml/min/1.73m²)
 - 32% risk reduction
- Composite kidney outcome in patients w/T2DM
 - 48% risk reduction

Summary of SGLT2i Kidney Outcomes								
			Primary Outcomes		Kidney Outcomes			
SGLT2i	Trials	Kidney-related eligibility criteria	Primary Outcome	Effect on primary outcome	Effect on albuminuria containing composite outcome	Effect on GFR Loss		
Empagliflozin N=7,020	EMPA-REG OUTCOME	eGFR ≥30 ml/min/1.73m²	MACE	\downarrow	$\downarrow\downarrow$	$\downarrow\downarrow$		
Canagliflozin N= 10,142	CANVAS Trials	eGFR ≥30 ml/min/1.73m²	MACE	\downarrow	$\downarrow\downarrow$	$\downarrow\downarrow$		
N=4,401	CREDENCE	UACR 300-5000 mg/g eGFR 30-90 ml//min/1.73m ²	Progression of CKD	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$		
Dapagliflozin N=17,160	DECLARE- TIMI	CrCl ≥60 ml/min 45% eGFR 60-90 ml//min/1.73m²	MACE & composite of HHF or CV death	$\leftrightarrow /\downarrow$	\downarrow	$\downarrow\downarrow$		
N=4,304	DAPA-CKD	UACR 200-5000 mg/g GFR 25-75 ml/min/1.73m ²	Progression of CKD	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$		
Ertugliflozin N =8,246	VERTIS CV	eGFR ≥30 ml/min/1.73m²	MACE	\leftrightarrow	\leftrightarrow	$\downarrow\downarrow$		

 \leftrightarrow no significant difference

 \downarrow significant reduction in risk, with hazard ratio (HR) estimate >0.7 and 95% confidence interval (CI) not overlapping

↓↓ significant reduction in risk, with HR estimate ≤0.7 and 95% CI not overlapping

Executive summary of the 2020 KDIGO diabetes management in chronic kidney disease. https://kdigo.org/wp-content/uploads/2018/03/KDIGO-Diabetes-in-CKD-GL-Exec-Summary.pdf. Accessed February 7, 2022

How do SGLT2 inhibitors work?

Glycemic efficacy in eGFR >60 ml/min/1.73 m²

- SGLT-2i \downarrow glucose in the proximal tubule, efficacy wanes as eGFR \downarrow
- Osmotic diuresis, natriuresis, and intraglomerular pressure reduction ↓ eGFR during first weeks of treatment, and ↑ towards baseline and stabilization after ~4 weeks
- ↓ in eGFR not seen in eGFR <40 ml/min/1.73 m², yet renal/CV benefits are seen

Renal and CV benefits (proposed)

- BP ↓ independent of blood glucose and eGFR (BP↓ seen in eGFR 25-80 ml/min/1.73 m²)
- ↓ in body weight (i.e. visceral fat)
- \downarrow in albuminuria, serum uric acid, inflammation, etc.

Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens. Mar 2020;29(2):190-198. doi:10.1097/mnh.000000000000584

SGLT2i Side Effect Monitoring

Genital mycotic infections and urinary tract infections

Ketoacidosis

Hypotension/syncope/ dehydration

Acute kidney injury

Bone fractures (canagliflozin only)

↑ LDL cholesterol -

Fournier's gangrene

 Assess preexisting factors: History of vaginal yeast infections, UTIs, Uncontrolled hyperglycemia, older adults, prior history, uncircumcised males

 Hold SGLT2i in prolonged fasting, critical illness or upcoming surgery to minimize risk

Reduce dose of concomitant diuretic medications

• Assess preexisting factors: hypovolemia, chronic kidney insufficiency, heart failure, diuretics/RAASi/NSAIDs

• Assess fracture history

Monitor labs

• Monitor pain, tenderness, redness, or swelling in genital area

Padda IS. Sodium-glucose transport protein 2 (SGLT2) inhibitors. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK576405/. Published January 6, 2022. Accessed February 10, 2022.

CKD SGLT2i Dosing Recommendations

eGFR (ml/min/1.73m²)	Empagliflozin	Canagliflozin	Dapagliflozin	Ertugliflozin
>60	10 mg daily	100 mg daily	10 mg daily	15 mg
45-60				
30-45	Initiation not recommended			Use not recommended
<30	Contraindicated (CI)	Initiation not recommended Continue in UACR>300 mg/g	Initiation not recommended (<25ml/min/1.73m ²)	
On Dialysis	CI	CI	CI	CI

Canagliflozin [package insert]. Titusville, NJ: Janssen Pharmaceuticals; 2019. Dapagliflozin [package insert] dp. Washington, DE: AztraZeneca Pharmaceuticals LP; 2014 Ertugliflozin [package insert] ep. Whitehouse Station, NJ: Merck & Co., INC.,; 2014 Empagliflozin {package insert] ep. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals; 2014

Key Take Aways for SGLT2i

CKD WITH ALBUMINURIA CKD WITHOUT ALBUMINURIA SGLT2i w/evidence GLP-1 RA w/CVD SGLT2i w/CVD GLP-1 RA SGLT2i w/primary labeled indication if of ↓ CKD w/CVD labeled labeled evidence of $\downarrow CKD$ progression in SGLT2i not progression indication indication **CVOTs** tolerated or CI Canagliflozin Empagliflozin Empagliflozin ? ? (off-label) Dapagliflozin Canagliflozin

Diabetes care. American Diabetes Association.https://diabetesjournals.org/care/issue/45/Supplement_1. Published January 1, 2022. Accessed February 8, 2022.

Glucagon-like peptide receptor agonists (GLP-1 RAs)

Executive summary of the 2020 KDIGO diabetes management in chronic kidney disease. https://kdigo.org/wp-content/uploads/2018/03/KDIGO-Diabetes-in-CKD-GL-Exec-Summary.pdf. Accessed February 7, 2022. American Diabetes Association Professional Practice Committee. 11. chronic kidney disease and risk management: Standards of medical care in diabetes-2022. American Diabetes Association. https://diabetesjournals.org/care/article/45/Supplement_1/S175/138914/11-Chronic-Kidney-Disease-and-Risk-Management. Published December 16, 2021. Accessed February 8, 2022.

Primary Literature

Review of GLP-1 Kidney Outcomes							
			Primary Outcomes		Kidney Outcomes		
GLP-1 RA	Trials	Kidney-related eligibility criteria	Primary Outcome	Effect on primary outcome	Effect on albuminuria containing composite outcome	Effect on GFR Loss	
Lixisenatide	ELIXA	eGFR ≥ 30 ml/min/1.73m²	MACE	\leftrightarrow	\downarrow	\leftrightarrow	
Liraglutide	LEADER	eGFR ≥ 15 ml/min/1.73m²	MACE	\downarrow	\downarrow	\leftrightarrow	
Semaglutide (SUBQ)	SUSTAIN-6	Dialysis patients excluded	MACE	\downarrow	$\downarrow\downarrow$	N/A	
Semaglutide (oral)	PIONEER-6	eGFR ≥ 30 ml/min/1.73m²	MACE	\leftrightarrow	N/A	N/A	
Exenatide ER	EXSCEL	eGFR ≥ 30 ml/min/1.73m ²	MACE	\leftrightarrow	\leftrightarrow	\leftrightarrow	
Dulaglutide	REWIND	eGFR ≥ 15 ml/min/1.73m²	MACE	\downarrow	\downarrow	\downarrow	

 \leftrightarrow no significant difference

↓ significant reduction in risk, with hazard ratio (HR) estimate >0.7 and 95% confidence interval (CI) not overlapping

↓↓ significant reduction in risk, with HR estimate ≤0.7 and 95% CI not overlapping

Summary of GLP-1 Kidney Outcomes							
Trial	LEADER	SUSTAIN-6	REWIND	EXSCEL	AWARD-7		
Drug	Liraglutide	Semaglutide (SUBQ)	Dulaglutide	Exenatide ER	Dulaglutide vs insulin		
Ν	9340	3297	9901	14,752	577		
Criteria	≥30 ml/min/1.73m²	n/a	≥15 ml/min/1.73m²	≥30 ml/min/1.73m²	n/a		
eGFR<60	20.7%	28.5%	22.2%	22.9%	100% G3a-G4		
UACR	n/a	n/a	7.9% severe	3.5% severe	44% severe		
F/u time	3.8 yr	2.1 yr	5.4 yr	3.2 yr	52 wk		
CV Outcomes	CV death, Nonfatal MI, Nonfatal stroke	CV death, Nonfatal MI, Nonfatal stroke	CV death, Nonfatal MI, Nonfatal Stroke	CV death, Nonfatal MI Nonfatal stroke	n/a		
Results	13% RRR	26% RRR	12% RRR	9% RRR	n/a		
Kidney Outcomes	Severe UACR Doubling of Scr ESRD Renal death	Severe UACR Doubling Scr CrCl <45 RRT	Severe UACR 30% eGFR decline RRT	 40% eGFR decline, RRT, renal death 40% eGFR decline, RRT, renal death, severe albuminuria 	1) eGFR 2) UACR		
Results	22% RRR	36% RRR	15% RRR	1) 13% RRR ' 2) 15% RRR	 Less decline No difference 		

Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: An updated review of head-to-head clinical studies. Therapeutic advances in endocrinology and metabolism.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953228/. Published March 9, 2021. Accessed February 10, 2022.

Executive summary of the 2020 KDIGO diabetes management in chronic kidney disease. https://kdigo.org/wp-content/uploads/2018/03/KDIGO-Diabetes-in-CKD-GL-Exec-Summary.pdf. Accessed February 7, 2022

Primary Literature

Renal benefits remain uncertain

- CV outcome trials and metanalysis suggest a renal protective effect of GLP-1RA
- eGFR <60 ml/min/1.73m² ranged from 17-28% in most trials
- Findings driven by macroalbuminuria \downarrow and lack of statistical power for other outcomes

Ongoing Trials

- FLOW Semaglutide (SUBQ) trial (Anticipated completion 2024)
 - Purpose: Semaglutide vs Placebo, primary renal outcomes, in T2DM and w/o T2DM
- EMPA-SEMA (Status unknown-anticipated completion was 2019)
 - Synergistic with SGLT2i to optimize renal outcomes?
 - Purpose: Empagliflozin alone vs combination w/semaglutide (SUBQ), change in albuminuria, in T2DM and albuminuria

Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: An updated review of head-to-head clinical studies. Therapeutic advances in endocrinology and metabolism. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953228/. Published March 9, 2021. Accessed February 10, 2022.

How do GLP-1 RA Work?

Glycemic efficacy

- Stimulate glucosedependent insulin secretion
- Inhibit glucagon secretion
- Reduce gastric emptying
- Reduce appetite
- Promote satiety

Proposed CV and renal benefits

- Natriuretic and diuretic properties
- \downarrow in systolic BP
- \downarrow oxidative stress
- ↓ weight
- Improves lipid profiles

Dose adjustments

- Dulaglutide
 - eGFR >15 ml/min/1.73m²
- Exenatide ER
 - CrCl >30 ml/min/1.73m²
- All others: No dose adjustments
- Limited evidence in severe CKD

Rojano Toimil A, Ciudin A. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. J Clin Med. Aug 31 2021;10(17)doi:10.3390/jcm10173955

Key Take Aways for GLP-1RA

CKD + ALBUMINURIA CKD WITHOUT ALBUMINURIA SGLT2i w/evidence GLP-1 RA with CVD SGLT2i w/CVD GLP-1 RA SGLT2i w/primary of ↓ CKD labeled indication if w/CVD labeled labeled evidence of UCKD SGLT2i not progression in progression indication indication **CVOTs** tolerated or CI Dulaglutide Dulaglutide Canagliflozin Empagliflozin Empagliflozin Liraglutide Liraglutide (off-label) Canagliflozin Dapagliflozin Semaglutide Semaglutide

USHP

Diabetes care. American Diabetes Association.https://diabetesjournals.org/care/issue/45/Supplement_1. Published January 1, 2022. Accessed February 8, 2022.

Mineralocorticoid Receptor Antagonists (MRA)

MRA FDA Approval Dates

What is finerenone?

Highly selective <u>non-steroidal</u> mineralocorticoid receptor (MR) antagonist

- Higher selectivity and higher affinity to MR compared to spironolactone and eplerenone (steroidal MRAs)
- Equal tendency to heart and kidney compared to steroidal MRAs

Mechanism of action

• By inhibiting activation of the MR receptor, finerenone inhibits pro-inflammatory and pro-fibrotic factors that halt progression of renal tissue damage

Eplerenone and Spironolactone have limited use in CKD associated w/T2DM

• Hyperkalemia, gynecomastia, etc.

Finerenone [package insert] fp. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc.; 2021.

American Diabetes Association Professional Practice Committee. 11. chronic kidney disease and risk management: Standards of medical care in diabetes-2022. American Diabetes Association. https://diabetesjournals.org/care/article/45/Supplement_1/S175/138914/11-Chronic-Kidney-Disease-and-Risk-Management. Published December 16, 2021. Accessed February 8, 2022.

Primary Literature

2020 FIDELIO-DKD

- Finerenone vs Placebo
- Primary Renal Outcomes

2021 FIGARO-DKD

- Finerenone vs Placebo
- CVOT

The NEW ENGLAND JOURNAL of MEDICINE

FIDELIO-DKD

Primary renal composite outcome

- ESRD
- Sustained eGFR decrease of at least 40% (primary driver)
- Renal death

Baseline Characteristics (n = -5,700)

- ~ 99.9% on ACEi/ARB; ~ 7% on SGLT2i
- ~ 52.5% eGFR 25-45 ml/min/1.73m
- ~ 87.5% UACR >300 mg/g

Results

- Median duration, 2.6 years
- A 31% greater reduction in UACR from baseline to month 4 was sustained throughout the study
- Hyperkalemia incidence 18.3% vs 9%
- Hyperkalemia leading to discontinuation 2.3% vs 0.9%

Additional Trials

- FIGARO-DKD: Positive cardiovascular outcomes
- Upcoming: Finerenone and Empagliflozin vs Finerenone only in CKD + T2DM

ORIGINAL ARTICLE

Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes

George L. Bakris, M.D., Rajiv Agarwal, M.D., Stefan D. Anker, M.D., Ph.D., Bertram Pitt, M.D., Luis M. Ruilope, M.D., Peter Rossing, M.D., Peter Kolkhof, Ph.D., Christina Nowack, M.D., Patrick Schloemer, Ph.D., Amer Joseph, M.B., B.S., and Gerasimos Filippatos, M.D., for the FIDELIO-DKD Investigators*

18% RRR in primary renal composite outcome

Bakris GL, Agarwal R, Anker SD, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. Dec 3 2020;383(23):2219-2229. doi:10.1056/NEJMoa2025845

Finerenone Dose Adjustments

Not recommended

Potassium Monitoring

K+	lf K+ is	If K+ is >5 mEq/L, do NOT start					
	Check	Check K+ 4 weeks after staring or sooner if K+ 4.8-5.0 mEq/L					
	Monito	Monitor throughout treatment and adjust the dose as needed					
eGFR If e		R ↓ >30%, maintain 10 mg dose					
		Current finerenone dose					
		10 mg daily	20 mg daily				
Current Serum	≤ 4.8	Increase 20 mg	Maintain				
Potassium (mEq/L)	> 4.8 - 5.5	Maintain	Maintain				
	> 5.5	HOLD Restart ≤ 5.0 mEq/L	HOLD Restart ≤ 5.0 mEq/L				

Finerenone [package insert] fp. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc.; 2021.

Key Take Aways on Finerenone

When to use Finerenone

 Option for CKD and T2DM patients who cannot tolerate RAASi/SGLT-2i or as an add on in patients with increased risk of CKD progression or CVD

Monitor Potassium (K+)

- Do not a start if K+ is >5 mEq/L
- Adherence to monitoring labs is important, including patients on RAASi and diuretics

				Persistent (ma/a)	albuminuria	categories
				A1	A2	A3
Prognosis of CKD			Normal to Mildly Increased	Moderately Increased	Severely Increased	
				< 30	30-300	>300
	G1	Normal or high	≥ 90			
n²)	G2	Mildly decreased	60- 89			$\left \right>$
in/1.73 n	G3a	Mildly to moderately decreased	45- 59		$\left \right>$	
m/lm) s	G3b	Moderately to severely decreased	30- 44		\searrow	
ategorie	G4	Severely decreased	15- 29			
GFR c	G5	Kidney Failure	<15			

Finerenone [package insert] fp. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc.; 2021.

Co-Pay Cards

Government insurance beneficiaries are not eligible

Product	Per Month	Max coverage
Canagliflozin (Invokana®)	\$0	No limit first month; \$200/month; \$3,000/year
Dapagliflozin (Farxiga®)	\$0	\$175/month; \$150/month without insurance
Empagliflozin (Jardiance®)	\$10	\$175/month
Ertugliflozin (Steglatro ®)	\$0	\$583/month
Dulaglutide (Trulicity®)	\$25	\$150/month; \$1,800/year
Exenatide ER (Bydureon®)	\$0	\$300/month
Liraglutide (Victoza ®)	Discontinued	
Semaglutide (Ozempic®)	\$25	\$150/month
Finerenone (Kerendia®)	\$10	\$3,000/year

Current as of 02/2022

Patient Assistance Programs (PAP)

Invokana®	Johnson & Johnson Patient Assistance Foundation			
Farxiga®	AstraZeneca Prescription Savings Program	Req pape	uires erwork	Patient must meet
Jardiance®	Boehringer Ingelheim Cares PAP	fron patie	n the nt and	criteria to
Steglatro®	Merck Patient Assistance Program, Inc.	the pi	rovider	qualify
Trulicity®	Lilly Cares Foundation PAP		ho	Medicare
Victoza®	Novo Nordisk PAP	medio	cations	Part D patients are
Rybelsus®	Novo Nordisk PAP		liee	eligible
Kerendia®	Bayer US Patient Assistance Foundation			
		-		

When to Refer to Nephrologist

Indications to refer to nephrologist

- Clinical findings inconsistent with typical diabetic nephropathy
- Massive proteinuria
- Hematuria, casts, and/or active urinary sediment
- AKI or rapidly declining eGFR
- Anemia of CKD
- Complex comorbidities (e.g., hyperparathyroidism or bone disease)
- Advanced CKD (i.e., eGFR <30 ml/min/1.73 m²)

•				Persistent albuminuria categories (mg/g)			
			A1	A2	A3		
Prognosis of CKD		Normal to Mildly Increased	Moderately Increased	Severely Increased			
				< 30	30-300	>300	
	G1	Normal or high	≥ 90		Treat	Refer	
m²)	G2	Mildly decreased	60- 89		Treat	Refer	
in/1.73	G3a	Mildly to moderately decreased	45- 59	Treat	Treat	Refer	
ss (ml/m	G3b	Moderately to severely decreased	30- 44	Treat	Treat	Refer	
Ategorie PD		Severely decreased	15- 29	Refer	Refer	Refer	
GFR c	G5	Kidney Failure	<15	Refer	Refer	Refer	

USHP

KDIGO 2012 clinical practice guideline for the evaluation.https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf. Accessed February 6, 2022.

Conclusion

CKD carries a heavy burden economically and in quality of life

- 5% of Medicare patients have CKD associated with T2DM, yet expenditures account for 11%
- CKD associated with diabetes is the leading cause of ESRD
- Coordinated, multidisciplinary care with attention to appropriate, timely screening and preventative management is crucial to reducing morbidly and mortality

SGLTi

• Data suggests a class effect on \downarrow of CKD progression, in addition to CV benefits

GLP1-RA

Data limited in severe CKD prevention compared to CVD benefits, use in significant CVD

Finerenone

• Monotherapy effects are unknown, use as alternative or add on therapy in high-risk CKD and CVD patients

